

Stash Backend
Bachelor Project in Web Development PBA

Written by
Gábor Pintér

Supervised by
Dany Kallas

Københavns Erhvervsakademi
December 18, 2017

Stash Backend: Bachelor Project in Web Development PBA December 2017

Table of contents

Table of contents 2

1. Introduction 4

1.1 Abstract 4

1.2 About the project 5

1.3 Reading guide 5

2. Project definition 7

2.1 Motivation 7

2.2 Problem area 7

2.3 Problem formulation 8

2.4 Project objectives 8

2.4.1 Purpose of the project 8

2.4.2 Desired effect 9

2.5 Scope of the project 9

2.5.1 Limitations 9

2.6 Planning and organization 10

2.6.1 Source code version control 10

2.6.2 Project management 10

3. State-of-the-art and trends 11

3.1 Web services 11

3.1.1 Benefits of web services 11

3.1.2 Web service types 12

3.2 Software-as-a-Service 13

4. Solution design 14

4.1 Target audience 14

4.1.1 Establishing the need 14

4.1.2 The intended user experience 14

4.2 Specifications 15

4.2.1 Functional requirements 15

4.2.2 Non-functional requirements 16

4.3 Design patterns 17

4.3.1 Design patterns: Object Oriented Programming 17

4.3.2 Design patterns: Model-View-Controller 17

4.3.3 Design patterns: RESTful architecture 18

4.4 Development stack 19

 Page 2 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.5 System architecture 20

4.5.1 Java and Gradle 20

4.5.2 Dropwizard 21

4.5.3 PostgreSQL 22

4.6 Database design 23

4.6.1 App entity 23

4.6.2 Master entity 23

4.6.3 Document entity 23

4.6.4 File entity 24

4.6.5 User entity 24

4.6.6 Entity Relation Model 24

5. Solution implementation 25

5.1 Stash Application 25

5.2 Services 25

5.3 Modules 27

5.4 Database 28

5.5 Views 30

5.6 Security 32

5.6.1 SQL injection 32

5.6.2 Cross-Site Scripting (XSS) 33

5.6.3 Cross-Site Request Forgery (CSRF) 34

5.6.4 JSON Web Tokens (JWT) 35

5.7 Learnings 37

6. Reflection 38

6.1 Improvements 38

6.2 Future perspectives 39

6.3 Evaluation and final remarks 39

7. Appendices 40

7.1 Source code 40

7.2 Installation guide 40

7.3 User survey & user tests 40

7.4 Literature 41

7.5 References 41

 Page 3 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

1. Introduction

1.1 Abstract
This is a final report of the bachelor project called Stash Backend made for the Web Development
PBA program at Copenhagen School of Design and Technology. Stash Backend is a web application
targeting front-end and mobile developers by providing the most commonly demanded server-side
operations and features such as database management and user authentication in a convenient,
easy-to-use manner.

The report documents the design and development process of the product, backed up by both
theoretical knowledge and the detailed description of my decisions and motivation. Its purpose is to
provide a comprehensive overview of the Representational State Transfer (REST) architecture by
introducing the necessary methodologies and by bringing theories into practice.

1.2 About the project
The purpose of the project is to introduce and demonstrate the implementation of a fully
functioning RESTful API alongside with its design principles and advantages in practice. 1

The document covers the historical background of web services, which is necessary to understand
the relevance and importance of the REST structure. Starting by analyzing the problem area around
web services, the report guides the reader through several scenarios, in which REST might be the
most optimal solution for developing web services. This introduction is followed by the description
of the Backend-as-a-Service (BaaS) software model which recently became a remarkably popular
type of service, and which is nevertheless a perfect candidate for demonstrating the characteristics
of REST.

The objectives of the report also include reflecting on developing a general purpose back-end in the
shape of Stash Backend, which provides the following features: database management, user
authentication and file storage. This presents a perfect opportunity to demonstrate the
methodologies and expertise I have obtained throughout the Web Development PBA modules, such
as Development Environments, Databases and Web Security. When choosing a problem area for my
bachelor project, I seeked for a subject that was a great balance between my acquired skills and
unknown technologies. This let me to utilize the proficiency I have acquired through my education
which resulted in a relatively fast pace of development, but in the meantime I also had the
opportunity to discover new areas of web development and face new challenges, which gave the
project a great, exciting flavour.

1 Application Program Interface

 Page 4 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

1.3 Reading guide
The report consists of 7 chapters, each describing different states of the development process.

The 1. Introduction includes a quick overview of the project and introduces chapters of the report.
This chapter is followed by the 2. Project formulation, in which I describe the sources of my
motivation and explain what inspired me to build Stash Backend. This chapter also encompasses a
problem formulation and the project goals. After defining the project objectives, the scope and the
tasks of the project are described alongside with their limitations.

In the chapter 3. State-of-the-art and trends I describe relevant background knowledge about web
services and the Software-as-a-Service models gathered from both studied modules and external
sources. The purpose of this section is to discover and compare various approaches and solutions in
order to pick the one that suits the project the best.

In the following chapter named 4. Solution design I start focusing on the implementation of the
solution: a detailed software design plan is delineated. In this plan I describe the languages, tools
and environments and I have chosen for the project and explain how these components are
interconnected to form a whole. This chapter also covers the design principles I have applied on the
project such as Object-Oriented Programming and the Model-View-Controller pattern.

The solution design is followed by the chapter 5. Solution implementation, where I demonstrate
various programming practices backed up by examples from the source code of the application. In
this section I bring examples from each component of the application, illustrating how I solved
various challenges in the fields of REST resource management, database management and web
security.

The next chapter named 6. Reflection includes my final conclusion on the project. Here I also
mention a number of future improvements and introduce the future perspectives of the project.

In the last chapter 7. Appendices the reader can find a reference of the application’s source code, a
quick installation guide and the list of references mentioned in the report.

 Page 5 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

2. Project definition

The purpose of this chapter is to put the project into perspective by introducing my motivation,
defining the problem area and then by composing a problem formulation in the shape of three
focused questions.

2.1 Motivation
My personal motivation of choosing REST and BaaS as my subjects derives from choosing backend
development as my primary expertise. Throughout the Web Development PBA program I have
specialized myself in the field of front-end development; thanks to my deep interest in the Web
Development and Mobile Development modules. This however came into change when at the last
semester of the program I have started to seek for internship opportunities. I came into the
realization, that in order to achieve my ultimate goal, which is to become a full-stack web
developer, I have to start deepening my knowledge in server-side development as well.

During the internship program I managed to get familiar with various backend methodologies and
structures such as SOAP and REST . I have obtained knowledge which reached beyond 2 3

understanding how to use web services from a client perspective; I have gained practical
knowledge about how to implement my own services. I found it fascinating how various services
made by different companies and organizations can be connected under the surface through the
web in order to provide the broadest functionality and best user experience possible. This made me
realize and appreciate the importance of web services, which by today became an indispensable
knowledge for every web developer.

2.2 Problem area
The demand for building web services arose in the early years of the World Wide Web. Initially,
software only had a human-to-machine communication mechanism, where the machine relied on
internal resources in order to produce the desired output. Developers however wanted to reach
beyond building isolated software, and started developing systems which could transfer and
exchange data with other systems on the World Wide Web. Hence the term “web services” was
born.

With web services, developers can easily integrate third-party services and data within their own
applications. It presents the developers the opportunity to integrate real-world location data to their
applications using Google Maps or authenticate their users using Facebook Login.

2 Simple Object Access Protocol
3 Representational State Transfer

 Page 6 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

REST is one of the most commonly implemented architecture for web services. Numerous
industry leading companies provide RESTful APIs as part of their services including Google (e.g.:
Google Fit [2.2.a]), Microsoft (e.g.: Live SDK REST API [2.2.b]) and Apple (e.g.: Apple News API
[2.2.c]). Thanks to the architecture’s flexibility and standardized interaction model, REST quickly
became an industry standard and therefore a must-to-know structure for every web developer.
Beyond adapting to the industry standards which is nevertheless always a necessary action to take,
REST also helps to:

● Develop well organized and structured backends for our own applications
● Understand how to integrate with third party APIs
● Develop and deploy our own web services

2.3 Problem formulation
I will put the project into frame by establishing a problem formulation in a shape of three key
questions which are meant to be covered in the following chapters.

1. What are methodologies and constraints behind a REST architecture
and what are their purposes?

2. How to apply these principles in practice to the most important web operations
including user authentication, database interaction and file transfer?

3. How to secure a RESTful API?

2.4 Project objectives
It is important to put the project into perspective by defining its objectives. Meanwhile the ultimate
goal of the project is to learn how to implement a functioning RESTful API is, the only way of
evaluating its efficiency is to build an actual product for people that attempts to solve a real-world
issue.

2.4.1 Purpose of the project
The purpose of the project is to obtain a comprehensive knowledge about RESTful APIs by
building a fully functioning Backend-as-a-Service product, that serves as a backbone for
applications built by mobile and front-end developers. Therefore, this general purpose backend
called Stash Backend has to be able to handle the most basic backend operations such as user
authentication and database management, and also provide a RESTful API for interaction.

 Page 7 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

2.4.2 Desired effect
Ultimately, the desired effect is to build a Backend-as-a-Service application which makes it easier
and faster for mobile and front-end developers to build full-stack applications. The evaluation will
therefore involve user tests made by developers, where besides evaluating the application’s
functioning, the product’s usability and convenience will also play a significant role.

2.5 Scope of the project
Besides formulating the purpose and the key objectives of a project, it is extremely important to also
take limitations into consideration, which have the following two main factors: time constraints and
knowledge.

The project aims to deliver a fully functional prototype that demonstrates the main characteristics
of REST by addressing and solving real web development challenges. The application should be able
to run locally and solve real web development case scenarios. However, the final product of this
iteration is not intended to be used in production, as some of the features might only serve
demonstrational purposes, and the field of software deployment will not be in the scope of the
project. Therefore from a web security perspective, the application is ought to demonstrate various
implementations of security principles, but full security coverage is not expected.

2.5.1 Limitations
There are several limitations that have to be addressed in advance, in order to keep the project
within feasible frames:

● Time constraints might compel the implementation to take shortcuts and leave some of the
features unfinished. In this case, the end user should be informed about this either through
this report or through the application itself.

● Research limitations in the market of Software-as-a-Services might result in the
implementation of a rather less unique end product. As the purpose of this project is to
introduce REST, providing a unique, business-wise sustainable product will not be in focus.

● Security limitations will also be introduced, as the final application is only intended to be
used for test purposes by running locally.

● Visual design limitations are also expected, as the main interaction between the end-user
(developers) and the software will mainly take place through the API. Responsiveness, brand
identity and user interaction design is not expected to be part of the project.

● Report length constraints limits the depth and detailness of the project description. Certain
fragments of the implementation might not be described in details or might be ignored.

 Page 8 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

2.6 Planning and organization
The project implementation started with planning and organization. Stash Backend was a
one-person project which had its own advantages and pitfalls, which had to be taken into
consideration.

2.6.1 Source code version control
The development was based on using today’s primarily dominant version control system, Git
[2.6.1.a], which proved to be a good choice due to its richness in features and numberless
documentation and resources provided online. The code was backed up and hosted by GitHub
[2.6.1.b], which is a great option for open-source projects, as it provides clear visualization of the
project’s codebase and the project’s tasks.

2.6.2 Project management
One of the advantages of a one-person project is that there is no need for communication channels;
however a well-planned project management system remains necessary. I have decided to follow
the agile development methodology [2.6.2.a], where I divided the development into weekly sprints,
each one containing tasks assigned for that given week. At the end of the weeks the tasks were
evaluated, which helped to introduce new changes in structure or pace in the upcoming sprints.

During the implementation user tests have been done iteratively. In these user tests I have asked
developers to perform a series steps in order to achieve a certain goal. Meanwhile the developers
tried to accomplish their objectives, I have observed how they approached to solve the challenges,
took notes and asked them to rate the convenience of the application. The results of the user tests
have been documented in the attachment Stash Backend - User tests [2.6.2.b].

As the development of the project proceeded, new ideas raised which did not fall into the priory
category; in this case the issue was recorded in the backlog of the project as a “nice-to-have” feature,
ready to be implemented as soon the MVP is in place. For project management visualisation I have 4

used GitHub Issues [2.6.2.c], as this service was already provided along with a GitHub Repository,
and its features happened to cover all my needs in the shape of labels, milestones, detailed issue
descriptions and deadlines.

The application implementation was preceded by project planning and research, where ideas and
learnings had to be documented. For this purpose I have chosen Google Drive [2.6.2.d] to work
with, as it offers great, rich-in-features applications out of the box.

4 Minimum Viable Product

 Page 9 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

3. State-of-the-art and trends

The goal of this chapter is to provide professional background knowledge and to familiarize the
reader with the terms I am going to use throughout the report. This includes the history of web
services, the most commonly used web service structures and the introduction of the
Software-as-a-Service model.

3.1 Web services
In order to choose the right structure for our implementation we need to truly understand what
web services are and how they work. W3C (World Wide Web Consortium) defines the term “web
services” the following way: “Web services provide a standard means of interoperating between
different software applications, running on a variety of platforms and/or frameworks.” [3.1.a]. Simply
put, a web service is a function that can and intended to be accessed by other programs over the
web. It is targeted towards other programs and not humans.

3.1.1 Benefits of web services
Implementing and using web services have several benefits.

1. One of the advantages is that it can reduce the development time and expenses of a product
for a given company.

2. Another benefit is integrity; with these services we have the opportunity to integrate with
other applications, making our product more attractive for our users.

3. Web services can also provide solutions for content management, simply by providing data;
whether it is data about the user itself, or data retrieved from a third party.

A quick, real-life example is the Facebook Login [3.1.2.a] service, which can be used to provide our
users the possibility of registering themselves in our application using Facebook. This solution
makes our application more appealing by making the sign up procedure easier and more familiar
for the user. Furthermore, it presents us the opportunity to retrieve information about the users,
such as their locations, friends and photos, which we would have not received otherwise.

 Page 10 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

3.1.2 Web service types
There are various ways of building a web service. However, according to W3C we can differentiate
between two major classes of web services:

1. “REST-compliant web services, in which the primary purpose of the service is to manipulate
XML representations of Web resources using a uniform set of "stateless" operations; and

2. arbitrary web services, in which
the service may expose an arbitrary set of operations.” [3.1.3.a]

Without going into too much detail, let’s have a quick comparison between these two types. To
understand the difference between these classes, let’s first look at the common characteristics of
these type of services:

● In both systems data (objects) are referred as resources and are identified using URIs
(Uniform Resource Identifiers).

● Resources are exchanged in widely-known representational formats (XML, HTML, PNG etc.)

However, there are some key differences between these approaches: arbitrary web services (often
referred as SOAP services) use application-specific interfaces to describe the behaviour of the 5

service. In other words; each SOAP service had its own arbitrary way of manipulating resources,
which made the protocol rather verbose. Due to this, the slow parsing of its only messaging format
XML and the lack of standardized interaction model, REST architecture began to dominate the field
of web services.

REST (Representational State Transfer) is an architectural style for web services most
commonly using HTTP. Unlike SOAP, REST provides uniform interface semantics in the shape of
HTTP methods (POST, GET PUT, DELETE etc.) which are essentially equivalent to the basic CRUD
operations (create, read, update, delete). REST operations are stateless, which means that all the
necessary information about a given message is contained within the message itself, and the result
(output) does not depend on the state of the communication. REST quickly became an industry
standard thanks to its relatively easy implementation and standardized interaction model. On the
other hand it is important to point out that popularity does not automatically implies that REST
should be used over SOAP in every cases, as SOAP also have its own benefits including (but not
limited to):

● It can work on any communication protocol (such as FTP, TCP or HTTP)
● It includes security and authorization as part of the protocol (see WS-Security [3.1.3.b])
● It provides a protocol that guarantees SOAP message delivery with successful/retry logic built

in (see WS-ReliableMessaging [3.1.3.c])

5 Simple Object Access Protocol

 Page 11 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

Due to these advantages over REST, SOAP is an ideal choice and commonly used solution for
financial services (e.g.: as PayPal SOAP API [3.1.3.d] or Salesforce SOAP API [3.1.3.e]) and payment
gateways.

3.2 Software-as-a-Service
Today there is an increasing demand for Software-as-a-Service distribution models because of the
many benefits they offer to companies of all sizes and types. By using a SaaS, any given company
can easily lower the IT costs of hardware, software and people needed to manage these all.

According to W3C, “SaaS is software that can be accessed over the web but is hosted and supplied by a
third party vendor” [3.2.a]. Meanwhile this definition might sound a bit vague, SaaS is really just a
general term for a business model or software licensing which monetizes web services. It is licensed
on a subscription basis and has various subcategories; for example Infrastructure-as-a-Service (e.g.:
AWS [3.2.b]), Platform-as-a-Service (e.g.: Heroku [3.2.c]) or Backend-as-a-Service (e.g.: Firebase
[3.2.d]).

I have chosen to build a Backend-as-a-Service because of three main reasons:

1. The volume of a simple BaaS is ideal for this project.
2. As a BaaS is indented to perform general backend operations initiated by a wide range of

developers, it is a perfect candidate for demonstrating REST.
3. Convenience and ease are very important factors of a BaaS. Targeting these values makes it

easy to evaluate the success of the project.

 Page 12 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4. Solution design

The goal of this chapter is to formulate a detailed solution design which describes the required tools
and the list of features of the end application. In order to achieve this, two former steps have to be
taken: conducting a target audience analysis which will then afterwards help to formulate a list of
functional and nonfunctional requirements. Based on these specifications, I will be able to pick the
right development environments, languages and frameworks. By the end of the chapter we will
have a clear vision about what features and services the application is ought to offer in order to
evaluate the project successful.

4.1 Target audience
Stash Backend is intended to be used by software developers, more specifically mobile and
front-end developers. The purpose of the application is to provide a tool for client-side developers,
which they can use to build full-stack applications by only focusing on the client-side development
of the application, and leaving the rest for Stash Backend to handle. This way their development
pace speeds up dramatically, leaving them more resources on focusing what really matters for
them.

4.1.1 Establishing the need
In order to target real-world issues and make the evaluation of the solution easier, I have decided to
work closely with a small number of developers who acted as the target audience of the project and
performed the evaluation.

1. An entrant front-end developer who lacks of professional experience

2. An entrant front-end developer with web development education background

3. A professional front-end developer with a couple of years of industrial experience

Receiving feedback and insights from these developers helped to identify the most demanded needs
and to evaluate the efficiency and usability of the end-product from various perspectives.

4.1.2 The intended user experience
The desired user experience is a user interaction as smooth, easy and responsive as possible. From
the user point of view, the metric the application should be measured against is easiness; the
simpler it is to interact with the system, the quicker developers can prototype their applications.

 Page 13 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.2 Specifications
In this section I will define the specifications by formulating a list of functional and non-functional
requirements, which describe what the application is meant to accomplish.

4.2.1 Functional requirements
Functional requirements define what brings value to the user. To define these requirements from
the user point of view, I am going to use the user stories format [4.2.1.a], which is a highly effective
way of layouting requirements. I have formulated the user stories based on both my personal
experiences and on the user survey [4.2.1.b] I have conducted in cooperation with the developers:

● As a developer, I want to be able to create a backend for my client application (app), so I can
store the data of my application safely.

● As a developer, I want to be able to create separate backends for my apps, so I can use one
system for managing all my apps.

● As a developer, I want to have an graphical overview of the backend of my app, so I can see
all the data stored on the server.

● As a developer, I want to have a RESTful API to communicate with, so that I can easily
interact with the backend from my front-end app.

● As a developer, I want to have endpoints for creating, getting, updating, deleting and
authenticating users, so I can implement Registration and Login functionality to my app.

● As a developer, I want to have endpoints for creating, getting, updating and deleting JSON
documents, so I can store and retrieve unstructured data sent from my app.

● As a developer, I want to be able to retrieve JSON documents based on a provided key-value
pair, so I can retrieve a list of documents (e.g.: posts, books, cars with four seats etc.).

● As a developer, I want to have endpoints for uploading, downloading and deleting files, so I
can implement file uploading functionality to my app.

● As a developer, I want to be able to call these endpoints without any kind of security
constraints, so I can build my prototype swiftly.

● As a developer, I want to be able to set the endpoints to require app authentication, so I can
ensure that unauthorized requests will be rejected.

● As a developer, I want to be able to set the endpoints to require user authentication, so I can
ensure that specific actions will be tied to specific users (e.g.: users can only update their
own profiles).

● As a developer, I want to be able to set the endpoints to require master authentications (app
administrator), so I can ensure that only an authenticated master can perform specific,
sensitive operations (e.g.: update app name, delete app).

● As a developer, I want to have a configuration file containing key-value pairs for the
settings of Stash Backend, so I can easily customize the behaviour of my backend,
without doing any backend-development (e.g.: turn authentications on/off, set token
expiry time, set database credentials etc.).

 Page 14 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.2.2 Non-functional requirements
Based on the functional requirements I will now define non-functional requirements which are
essentially a list of requirements formulated from the Stash Backend developer point of view. These
specifications describe how the application should be structured and how the application should
accomplish the functional requirements.

● The application should include a web-server, to which the users (developers) can send
HTTP requests. This web-server should be embedded within the application itself, so the
users don’t have to install one (e.g.: Apache [4.2.2.a]) separately.

● From the requirements above, we can see that the application needs two interfaces: both a
web GUI (front-end), and a RESTful API.

○ Client applications (called apps) will communicate with Stash Backend through the
API. This interface will provide a machine-to-machine communication channel, and it
will be responsible for handling the application’s resources.

○ The application however will also provide a human-to-machine communication
channel in the shape of a web interface representing a Dashboard, which will
visualize the all the data stored on the server, similarly as phpMyAdmin [4.2.2b] does.
This way developers will be able to see and analyze the resources of their
applications. As interface design and front-end development is not in the focus of this
project, I have decided not to use JavaScript frameworks, instead, a simple
templating-engine will be used to serve the front-end.

● Stash Backend needs to be able to handle both relational and nonrelational datasets. The
resources within Stash Backend (apps, users, documents) are strongly relational (a document
belongs to a user who belongs to an app), therefore an SQL database is preferred over
NoSQL. However, as the users of Stash Backend apps need to be able to store unstructured
JSON documents, NoSQL datasets also have to be supported. Furthermore, as the application
has to provide the possibility of filtering (indexing) those documents, it won’t be enough to
simply store the documents as Strings in a relational database; a real NoSQL solution is
required.

● The application also needs to be able to authenticate requests, as certain operations should
be only accessible for certain requesters. Reading through the functional requirements leads
us to define three types of authentication:

○ App Authentication ensuring that the request is coming from an authenticated app.
○ User Authentication ensuring that the request is coming from an authenticated user.
○ Master Authentication, ensuring that the request is coming from an authenticated

master (app administrator).
● The app administrators should be able to turn authentication off using the configuration

file. As a matter of fact, it should be turned off by default for the sake of swift development.

 Page 15 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.3 Design patterns
As the lists of requirements are in place, we are ready to design the solution on technical level by
choosing the right programming concepts, development stack, tools, and we can lay out the project
structure.

4.3.1 Design patterns: Object Oriented Programming
Object Oriented Programming, also known as OOP is the most popular programming
paradigm in web development. I have chosen to apply OOP in my project because I had significant
experience working with this paradigm, thanks to the Web Development PBA program and my
internship, and also because this methodology fits perfectly with the REST architecture. Object
Oriented Programming is huge topic of discussion which reaches beyond the scope of this project,
however I will point out the fundamental concepts which I am going to target during the
implementation:

● Abstraction is a concept of taking a real-world object and representing it using
programming terms, while ignoring the unnecessary details and only focusing on the
characteristics that are relevant in the given context. By removing as much clutter as
possible and focusing on the most important details we can easily simplify the
implementation which helps to write highly maintainable code.

● Encapsulation is the process of combining relevant data and functions into a single unit
which then hides everything about itself except that is absolutely necessary to expose. This
prevents unauthorized components from accessing and/or mutating sensitive data, keeping
the data and codebase safe.

● Inheritance is a mechanism by which a unit can acquire the characteristics (fields and
methods) of another unit, providing the opportunity of building hierarchical architectures.
This methodology promotes code reusability, as classes that derive from other classes have to
define only their unique attributes and methods.

● Polymorphism is an ability of the objects to change their public interfaces based on how
they are being used. In other words, polymorphism is the ability to appear in many forms. In
practice this means that a method may have several implementations for certain classes,
providing different functionality for different situations. This lets us customize the
functionality of derived classes meanwhile keeping the hierarchical structure.

In chapter 5. Solution implementation I will describe a number of examples bringing these
principles into practice.

4.3.2 Design patterns: Model-View-Controller
Model-View-Controller, also known as MVC is a widely popular design pattern for structuring web
applications. In MVC there are three separate but interconnected layers being responsible for three
different but clearly defined concerns:

 Page 16 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

● The Model contains and represents the data the users can work with. It also contains rules
and restrictions regarding how the data can be manipulated and obtained.

● The Controller is the bridge between the Model and the View. It receives data from the
Model, processes it if necessary, and sends it to the View. It also contains logic for handling
user interaction, typically using HTTP requests.

● The View presents the data received from the Controller to the user, and exposes the options
and operations the users can take.

Stash Backend will provide a web GUI interface called the Stash Dashboard, which will apply the
MVC design pattern. This means that the concerns of these 3 components will have to be thoroughly
designed and separated from each other.

4.3.3 Design patterns: RESTful architecture
Another design pattern I am going to apply is of course REST. This architecture was first introduced
in Roy Fielding’s dissertation in 2000 [4.3.3.a]. The purpose of this pattern is to create a structure
that provides consistency and high reliability across multiple services and clients. REST describes
six constraints that have to be addressed and implemented:

1. Client-server: REST architecture differentiates two parties which results in a client that
doesn’t have to be concerned about data storage and in a server that is not concerned about
the user interface and user state. This improves the portability and scalability of both sides.

2. Cacheable: as clients can cache responses, these responses has to explicitly state whether
they are cacheable or not. This approach potentially saves interaction between the client and
the server which improves scalability and performance.

3. Layered system: a REST based system can consist of multiple architectural layers in which
layers cannot see past the next layer. These layers are often referred as middleware
components, and as a result the client doesn’t know how many middlewares are involved.

4. Code-on-demand: this optional constraint allows to update and extend the client’s
functionality from the server in the form of plugins or applets.

5. Stateless: the communication between the client and the server should not depend on the
state of the communication; everything that is important about a message (request) should
be included within the message itself.

6. Uniform interface: this constraint requires all the participants in a RESTful architecture to
use a uniformed interface for communication, which generally includes the methods and
media types provided by HTTP and URIs that identify the resources.

I will demonstrate how we can apply these constraints in practice in 5. Solution implementation.

 Page 17 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.4 Development stack
When choosing the right programming language, I have relied on the amount of my experience
with each potential languages. As I am developing the server side of the client-server relation of
REST, the programming language I have chosen is Java; a general-purpose, object-oriented language
that has been around long enough to provide all the necessary tools and frameworks I will need.

In order to save time on developing solutions for universal issues such as a web server, an http
client or document deserialization, I have chosen a framework called Dropwizard [4.4.a] that
happens to contain all these three, and even more. Among many great features, it also provides an
intuitive Configuration [4.4.b] interface for using a simple configuration file, with which the
application can be initiated, which comes really handy as this is has been defined as a requirement.
Dropwizard also supports Views [4.4.c], on which I can easily apply the MVC design pattern to build
Stash Dashboard. By using a framework my goal is to speed up the development process by focusing
only on those parts of the implementation which are relevant from the project’s perspective. To
build and compile the solution I have used Gradle [4.4.d] build automation system. Using this tool I
was able to build my Java files, write build scripts, and handle package management easily. With
Gradle I could also merge the entire application into one, single file, that is called a fatjar. Releasing
the end application using this single file makes the setup process for the users even easier.

In order to manage both relational and nonrelational databases, I have decided to use PostgreSQL
[4.4.e], which is a free, open-source relational database that provides NoSQL-style JSON processing
as well. Postgres proved to be a good choice thanks to its JSON functions and operators [4.4.f] which
let me index JSON objects easily. Dropwizard also had great support for Postgres integration in the
shape of Dropwizard JDBI [4.4.g] which is a flexible library for interacting with relational databases
using SQL.

Figure 4.4.a - Stash Backend Architecture

 Page 18 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.5 System architecture
In this section I would like to demonstrate how the application was structured using the formerly
selected core technologies; Java, Gradle, Dropwizard and PostgreSQL. In this quick overview I
would like present each component’s responsibility and the way they are interconnected.

4.5.1 Java and Gradle
Gradle is a great build and automation tool for Java, because it lets us write custom scripts for
building, testing or even deployment and also handles package management with which we can
easily fetch and utilize external packages. A Gradle project is defined within a file called
build.gradle, which contains the list of dependencies (external packages), the list of repositories
where these dependencies can be found, and the definitions of runnable scripts. This means that
the only tools we need in order to compile the source code are Java and Gradle.

Stash Backend utilizes three Gradle plugins: Gradle Java,
which is required to compile Java files, Gradle Application,
which is used for running the codebase as an application
from the command line and Gradle Shadow which is used
to compile and encompass the entire application into one,
single fatjar. In order to run the solution we need to specify
an entry-point of the application, which is done by specifying
the main class name (“mainClassName”).

It is a common practice to specify a section called ext (which
stands for Extra Properties) in which we can declare a set of
variables (such as version numbers and paths), that we can
then reuse in our dependency listings and scripts.

Figure 4.5.1.a - Gradle project structure (build.gradle)

 Page 19 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.5.2 Dropwizard
Dropwizard is a Java framework for building RESTful web services. Among many great features
and tools, it includes Jetty [4.4.2.a], a lightweight HTTP server which we can embed into our
application directly, Jersey [4.4.2.b], a library for mapping HTTP requests into Java objects and
Jackson [4.4.2.c], a library for JSON deserialization. These are all widely used and appreciated tools
that fit perfectly into my project. Setting up a Dropwizard application with Gradle is easy. All we
need to do is to add the required Dropwizard modules into our dependency list.

Figure 4.5.2.a - Dropwizard in Gradle (build.gradle)

Once the dependencies have been successfully fetched by Gradle, we
can create our main class called StashApplication, which is the entry
point of Stash Backend. To run this instance, we also need to provide
a configuration object. I will call this configuration object
StashConfiguration, and it will be created based on a main
configuration file called config.yml, which we will provide as an
argument whenever we run the application.

Inside StashApplication, we can define a series of commands we
would like to execute every time we launch the application. I will
utilize this feature to run database migrations for example. After the
StashApplication has been successfully initialised based on
StashConfiguration, it will use Resources to access and manipulate
data in the database. These Resources will share functionalities in
the shape of Modules, which will provide non-domain specific
operations (more about Modules in section 5.3 Modules).

Figure. 4.5.2.b - Dropwizard structure

 Page 20 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.5.3 PostgreSQL
In order to store data we need to implement a database connection. Dropwizard provides a helpful
module called Dropwizard JDBI [4.5.3.a] with which we can easily establish that. To establish a
connection in Dropwizard and perform a database operation the following steps are required:

1. Create a DBI (Database Interface) object based on the credentials provided by the
configuration object (StashConfiguration). This entity will represent the connection to the
PostgreSQL server.

2. Create a DAO (Data Access Object) for each resource, based on this connection. A DAO
will encompass SQL operations around one given resource.

3. Database migrations will be used to set up the initial schema, and manage upcoming
changes in the future. For this purpose I will use Liquibase [4.5.3.b].

4. The connection and the migrations will be established on each application initialisation.

I will describe the database implementation in detail in section 5.2 Database.

Figure 4.5.3.a - Creating DAOs based on an established database connection (StashApplication.java)

 Page 21 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.6 Database design
It is important to have a thoroughly designed database model before I start the implementation. The
database design consists of the following steps: first I formulate the mini-world, which describes
what the application does and how it behaves. To do this, I will rely on the formerly defined user
stories. Based on this, I can then define the database entities, which represent independent units
(resources) about which the application is going to store data. The next step will be to define the
relationships between the entities which might be one-to-one, one-to-many or many-to-many.

Based on the requirements specified above I have defined the following entities: app, master,
document, file and user. To apply the uniform interface principle of REST, these entities will
eventually act as the resources of our application, which will be available through their respective
URIs. To differentiate between the CRUD operations on the entities, we will obtain these resources
using corresponding HTTP methods. Each entity will have they own primary key called an id, which
will have to be included in the URI, plus a Timestamp representing the entity’s creation date and
time.

4.6.1 App entity
Apps are the most important entities in Stash Backend. They represent different backends created
for different client applications. Each app will have the following mandatory properties: id,
app_name and app_secret. The ID and the Secret will be used to authenticate requests which require
App Authentication.

4.6.2 Master entity
A master represents a human who administers an app therefore is authorized to perform any kind
of requests towards his/her app. Some endpoints will be protected and require Master
Authentication (this might be however turned off in the configuration file). A master entity will
have a property called app_id, which will contain a foreign key referencing an app entity. This
leads to a one-to-many relation where several masters can administer a given app.

4.6.3 Document entity
A document represents any kind of unstructured data. The way this data will be stored is the
following: it will of course have a field for it’s id, a field for the data itself called document_content
(stored in a JSON format), a Timestamp field for creation date called created_at, one called app_id
and another called owner_id. The last two ones will contain a foreign key, which will reference an
app and a user entity, leading to two other one-to-many relations. These relations represent which
app and user the document belongs to. However the owner_id field will be optional, therefore
documents might be created without providing an owner.

 Page 22 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

4.6.4 File entity
A file will contain metadata about a given uploaded file. Similarly to a document, a file will have
two fields called app_id and user_id referencing the app and user the file belongs to. Furthermore,
the entity will have two fields representing the location of the file on the server: file_path and
file_name. Another field will be added, called file_is_public which will be type of bool. This property
will play an important role when evaluating the requested file’s accessibility. Accessing files that
are not public will require User Authentication and User Authorization.

4.6.5 User entity
The user entity will represent a user of an app. It will contain basic information about the user,
such as his/her name, gender, address or birthday. Most of these fields however will be optional, the
required attributes when creating a new user will be the following: id, app_id, user_email and
user_password_hash.

4.6.6 Entity Relation Model

Based on the entities I have formulated the
following entity relationship model. Each entity
contains a foreign key referencing an app,
establishing a one-to-many relationship.

It might have been an option to create a
many-to-many relation between masters and
apps; in which case a cross-reference table would
have been created, containing 3 fields: an entity id,
a master_id and an app_id. For the sake of
simplicity, this has been not implemented
resulting in a master entity model that is tied to
one single app entity.

Figure 4.6.6.a - Entity Relation Model

 Page 23 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

5. Solution implementation

The goal of this chapter is to describe the implementation in details backed up by practical
examples.

During the implementation I have introduced a new term, which I am going to reference further
down in the report: services. The reason for this is to differentiate between the terms of Dropwizard
Resources and REST resources. Meanwhile the former is a container of various logic used to get and
process data (REST resources), the latter is used to express the representations of the database
entities. Ideally, these services should be independent Gradle projects with their respective
dependencies; this way we could easily implement, test, deploy and utilize them independently
from each other wich would fulfill the constraint of REST about layered systems. Due to the time
constraints of the project however I have decided not to prioritize this implementation.

5.1 Stash Application
The app initialisation is defined in the StashApplication class, where all of components get
registered. This is where the database connection is established using JDBI and where DAOs are
created based on that connection. After this, Services are registered using their respective DAOs,
and finally Filters (Authenticators) and Modules are registered here as well. The database
migrations are also initiated from this class.

5.2 Services
There are 5 services included in the current iteration of Stash Backend, namely: App-, User-,
Document-, File- and Dashboard service. Apart from the Dashboard service, they all provide
methods for the CRUD operations to be applied on one given resource. These resources are
identified by their respective URIs, using the RESTful naming conventions. To apply the REST
conventions properly, these operations are not differentiated by the URIs, but by the HTTP methods.

As an example, here are the endpoints provided by the App service (AppResource.java):

Method URI Description

POST /apps Create app

GET /apps/{appId} Get app

DELETE /apps/{appId} Delete app

POST /apps/{appId}/authenticate Authenticate app

 Page 24 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

We might notice that the POST requests slightly differ in behaviour; meanwhile the first one does
what is expected from a CRUD perspective (“create a new resource identified by this URI”), the latter
is what the book RESTful Web Services calls an Overloaded POST [5.2.a], which means a POST
request that does not actually create a new resource. This is however completely legal, as according
to the HTTP specification a POST request means “providing a block of data, such as the result of
submitting a form, to a data-handling process” [5.2.b]. In this case, the client provides the
corresponding app Secret in the request body, and if it gets evaluated correct, it will get an App
Authentication Token in exchange.

Let’s have a closer look how we can implement such an endpoint in Java with Dropwizard. Here is
the implementation of the Delete app method in the App service (AppResource.java):

Figure 5.2.a - AppResource annotations (AppResource.java)

Figure. 5.2.b - Delete app endpoint (AppResource.java)

As we can see, both the class and its method utilizes the annotations (@Path(“/{appId}”), @DELETE
etc.) provided by Jersey. Specifying a path on the class we can define a root URI, to which the paths
of the methods will be appended, which in this case means that this method will be available at
“/apps/{appId}”. I also define what media types this resource can accept and produce. These
attributes will be inherited by the methods unless specified otherwise.

On the method I specify the HTTP method using the @DELETE annotation. Below that, I am using an
annotation I have registered myself in StashApplication; the @AppAuthenticationRequired filter will
only let this method execute if a certain condition is met. This condition is that the request has to

 Page 25 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

include two request headers including a valid App Authentication Token and an app ID (more about
tokens in 5.3 Security).

The method expects two parameters: a target app ID specified in the URI and the formerly
mentioned header including an app ID (which is the requester). The method has one simple logic
implemented: it simply does an authorization-check on the requester. If the requester app is
authorized to perform the required action, the app will be deleted using the DAO, and a response
204 No Content will be returned, otherwise a response 403 Forbidden will be returned.

This is an idempotent method [5.2.c], which is also part of the REST specification. This means that
the side-effects of several requests are the same as one, single request. The result will always be
independent from the number of requests we sent (e.g.: consider the command “i = 5” instead of
“i++”). Idempotency helps to build fault-tolerant APIs, as the client can keep sending the same
requests until it receives a satisfying response without worrying about unintended mutations.

5.3 Modules
There are a couple of components which are shared across services. I called these components
modules. These modules are initiated in the StashApplication based on the StashConfiguration, and
they are passed to the services as parameters.

Let’s take StashTokenStore as an example. I am using Json Web Tokens (JWT) [5.3.a] for
authenticating the requests, and in order to handle it uniformly across services, I have created a
module called StashTokenStore. As this module is initiated on an application level in
StashApplication, some of its attributes (such as token expiry time) can be configured right from the
configuration file.

Figure 5.3.a - StashTokenStore constructors (StashTokenStore.java)

Figure 5.3.b - Initializing StashTokenStore module with the StashConfiguration settings

(StashApplication.java)

 Page 26 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

Note that the accessibility of the properties of this class is set to private. This is how the
encapsulation constraint of OOP is applied; these properties are intended to be used internally,
within the class only and should not be accessed and mutated externally. This practice leads to a
safe and easy-to-maintain code.

Another example for a module is the StashResponse, which I have created in order to create a
RESTful uniform interface for communication. This unified response builder helps me to build
response objects that fulfill the REST constraints in one, centralized place.

Figure 5.3.c - Polymorphic method for response building (StashResponse.java)

In Figure 5.3.c we can see how we can apply polymorphism in OOP; by changing a method’s
signature we can alter its functionality, which in this case means that we can build the response
with and without a message and a response object.

5.4 Database
Stash Backend depends on a PostgreSQL server connection which is established whenever the
application is launched. This connection is being set up in StashApplication.java, where the initial
migration is executed as well. This migration is defined in XML format and located at
“src/main/resources/migrations/db.changelog.0001.initial-schema.xml”. This file describes the initial
tables to be created and their fields. Using Liquibase, we can easily introduce changes in the
database schema without losing currently stored data by creating a new migration; to do so we just
have to create another migration file with the updated schema and an increased sequence number
called changeSet.

The application communicates with the database through the methods of DAOs (Data Access
Objects). Using Dropwizard JDBI annotations, these interfaces will describe how the methods of
DAOs should be translated into SQL scripts. We can also utilize the @Bind annotation to bind the
method parameters to SQL values.

 Page 27 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

Figure 5.4.a - A DAO example (AppDao.java)

Stash Backend DAOs will depend on two main annotation: @SqlQuery to execute SQL script and
expect something in return and @SqlUpdate to execute a script without expecting anything back.

The queried dataset returned from the database has to be parsed which happens automatically if
the returned data type is recognizable by the JDBI library (these are mostly strings, numbers,
booleans, dates). However, if the returned dataset is unique, a mapper has to be provided which
describes how the returned data should be parsed into a Java object. To achieve this, we can use the
@Mapper annotation.

Figure 5.4.b - A DAO Mapper example (AppMapper.java)

If we look closely, we might notice that the creation date (created_at) of the app is not mapped, even
though it is clearly part of the resource. This is completely legal; the reason for this is because by
definition a REST application is not supposed to return the actual resource itself, but a
representation of a resource, which is described by RESTful Web APIs the following way: “When a
client issues a GET request for a resource, the server should serve a document that captures the
resource in a useful way. That’s a representation.” [5.4.a]. In this particular case I found it irrelevant
to include the creation date in this object, so for the sake of clear abstraction (OOP constraint:
remember to remove the clutter whenever possible) I simply ignored it.

 Page 28 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

5.5 Views
Stash Application provides a web interface which the app administrators can use to visualize the
data of their apps. This is provided by the Dashboard service which sends Views to the requester.

Figure 5.5.a - Dashboard service constructors (DashboardResource.java)

One of the main differences between the Dashboard and other services is the returned media types;
while all the other services return representations in JSON format, Dashboard replies in HTML, as
these resources are views which are intended to be consumed by browsers. As the REST HATEOAS
(Hypermedia As The Engine of Application State) [5.5.a] specification says, this has to be indicated
in the response headers, so I used the Jersey annotation @Produces to specify it.

Figure 5.5.b - Dashboard: Get App View (DashboardResource.java)

Similarly to the other services, Dashboard service also defines a list of endpoints identified by their
respective URIs and HTTP methods. However, instead of receiving the authentication credentials as
request headers, we receive them through cookies (@CookieParam). The reason for this is that in

 Page 29 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

this environment the interaction happens through the browser. Once the administrator has logged
in, his/her authentication token is stored in a cookie in the browser. Inside the method we can find
the business logic; fetching and processing data from the database, preparing for presentation; this
serves as the Controller part of the MVC methodology. We already know how DAOs work which
play the Model part; serving the data. Finally the View layer of the MVC methodology is represented
by a Dropwizard View. The distinction between the Model and the View is even more spectacular if
we have a look at how Dropwizard Views are constructed. One of their properties is a
templateName, which points to the actual template file; which in this case is a mustache file. The
other one is a ViewModel, which holds the data that was formerly obtained from the Model and
processed by the Controller.

Figure 5.5.c - Dashboard: App View (AppView.java)

In this particular example we can also see how inheritance in OOP creates hierarchy. Our custom
view extends a Dropwizard View by which it can inherit fields and the constructor. That’s why I
didn’t have to specify a templateName by myself; it has been already done in a Dropwizard View.

Figure 5.5.d - Dashboard: App View Template (app.mustache)

 Page 30 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

Stash Backend utilizes a library called Mustache [5.5.b] to define its templates. Using this
templating engine I could easily insert partials (e.g.: HTML snippet for a sidebar) and display data
stored in the View Model.

5.6 Security
Security is a critical aspect of every given web application. In the following section I would like to
describe various kinds of potential attacks and come up with examples how they can be prevented.

5.6.1 SQL injection
SQL injection is type of attack where the attacker attempts to figure out how the application
communicates with the database and based on this knowledge, he/she tries to communicate directly
with the database by injecting SQL scripts. In this scenario the attacker makes an assumption that
the values he/she provides in the URL/HTML form/Request Body will be directly inserted in the SQL
code that will be sent to the database server.

A quick example can be trying to look up a user with the following user name: “0; DROP TABLE
users;” Unless the application sanitizes this value, if we make an assumption that the query follows:
“SELECT * FROM USERS WHERE user_name = :userName”, then using the user name we provided
will result in the following query: “SELECT * FROM USERS WHERE user_name = 0; DROP TABLE
users;”. This script would delete our table which is unacceptable.

To prevent these kind of attacks is fairly easy and often times already implemented in modern
frameworks providing database communication. However according to OWASP (Open Web
Application Security Project) SQL injection is still the world’s most critical web application risk in
2017 [5.6.1.a], therefore its prevention is fundamental which means we cannot rely on
assumptions. We have to make sure that the tools we are using are prepared for these attacks and if
they are not; we have to implement the prevention ourselves.

Reading through the Five Minute Introduction of JDBI [5.6.1.b] we can confirm that JDBI utilizes
prepared statements, which is the primer defense mechanism suggested by OWASP [5.6.1.c]. Diving
into the codebase of the JDBI library, we can double-check this by tracking down the argument
binders.

 Page 31 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

Figure 5.6.1.a - String Argument binder in JDBI using Prepared Statement (StringArgument.java)

5.6.2 Cross-Site Scripting (XSS)
Cross-Site Scripting is the seventh most critical web application risk according to OWASP TOP 10 -
2017. In this type of attack the attacker injects a script into the system which is not executed by the
database server, but by an innocent user’s browser. To demonstrate this, let’s image a user whose
name is “”. If this data is not serialized correctly, visiting this
user’s profile where his/her name is visible will end up making our browser a request to the
specified URL. By expanding this code we can easily send our cookies within the request, potentially
handing our session over to the attacker.

Fortunately, JDBI is prepared to serialize these kind of inputs as well. By inserting malicious code
and retrieving this data in the browser we can confirm that both HTML and JavaScript snippets will
be serialized, therefore will not be executed.

Figure 5.6.2.a - Malicious code has been serialized before printing (Dashboard: Documents View)

It is also worth to mention that this type of serialization only happens (and supposed to happen)
when printing the data; not when we insert it in the database. The reason for this is that we either

 Page 32 of 41

http://www.mysite.com/attack

Stash Backend: Bachelor Project in Web Development PBA December 2017

should forbid this kind of data in the first place on the client (because it is not a valid user name for
example) or keep the original state of the input (because it is intended to be displayed as script).

Figure 5.6.2.b - All data in its original form in the database

5.6.3 Cross-Site Request Forgery (CSRF)
Cross Site Request Forgery is an attack which involves a bit of social engineering as well. In this
scenario the attacker attempts to ride the victim’s session by tricking them into making requests to
a domain for which the victim has access to. This approach is based on the assumption that the
victim will use same browser for opening the malicious code as he/she uses for the targeted site and
the access credentials are currently stored in that browser.

A quick example could be sending an email to the victim in which we place an “<img
src=’www.socialsite.com/me/friends’>” element. Even if this endpoint requires user authentication,
we can perform a successful request, because as the victim opens the e-mail this request will be
succesfully made; however only if our assumption was right about the user who uses the same
browser for opening the email and he is currently logged in. Note, that this particular request
assumably does not make any harm, as GET requests are supposed to be safe requests, but it
demonstrates how we could get around the authentication evaluation.

There are several ways of making it harder to forge such a request (e.g.: using POST requests, so
image tags in HTML cannot be used, checking the Referer header), however most of these does not
provide 100% protection. One of the most effective implementation of security against CSRF is to
require a key in the request which is has been formerly provided to the client but has not been
stored by the browser. To demonstrate this I have implemented CSRF protection against the logout
functionality in the Dashboard. Before this implementation, by simply tricking a client into calling
the corresponding endpoint we could simply log the victim out of the system without him/her
knowing about it.

 Page 33 of 41

http://www.socialsite.com/me/friends

Stash Backend: Bachelor Project in Web Development PBA December 2017

Figure 5.6.3.a - Protection against Cross Site Request Forgery

The logout button in the sidebar of the Dashboard is actually an HTML form which sends a POST
request to the server. Within this POST request a hidden field holds a value called fkey, that has
been generated by the server when we obtained this page. This value is expected on the server site
when the request has been received, and is not stored in the browser. Therefore even sending the
right request (POST) to the right endpoint from the right browser with the right cookies will be
rejected if this key is not included in the request.

5.6.4 JSON Web Tokens (JWT)
In order to authenticate the requests I am using Json Web Tokens. With this approach I can easily
encrypt and decrypt messages using a secret that is defined in the configuration file and never
leaves the server. These encrypted messages are called tokens and they contain information about
the token owners. These token are also required as part of the requests in order to perform certain
actions. As the client-server REST constraint and the separation-of-concerns principle stand, it’s the
client’s responsibility to maintain these tokens offline and safely save them. The tokens can be
acquired using the authentication endpoints by providing the claimed identity ID and secret.

Figure 5.6.4.a - Simple GET request containing all the necessary information for evaluation (Insomnia)

This is where the Stateless constraint of REST has been applied and came into practice; using this
approach we can contain all the necessary information required for evaluation within one request:
we include the ID of the requested resource in the URI and our credentials in the request headers
which consists of two parts: a claim (X-Auth-App-Id) and a proof (X-Auth-App-Token). No session
management is required.

 Page 34 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

These authentication tokens have an expiry date which can be set in the configuration file, and they
contain an entity ID. If this ID and the claimed ID match, the authentication has been considered
successful. However there are two other ways an authentication can succeed; if this feature is
turned off in the configuration file, or if a successful master authentication overwrites it.

Figure 5.6.4.b - App Authentication fails if it is turned on and master is not authenticated and token is not

present or not valid (AppAuthenticationRequiredFilter.java)

I have also implemented request authorization which we can see if we have a look at Figure 5.2.b.
The reason for this is that a request might be authenticated correctly and yet not authorized to
perform a given operation. However, I have decided the authorization to be part of the business
logic; the evaluation process of a given authorization really depends on the context, therefore I have
placed this implementation right inside the service method.

 Page 35 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

5.7 Learnings
During the implementation I have faced various challenges which I had to overcome. In this section
I would like to name a few, which I found to be instructive.

In the initial implementation I have not required the app ID in some of the resource URIs, because
the app ID could be easily retrieved from the authentication token as well. However, when I started
to implement the option of using the endpoints without authentication I realized that I have to
separate the domain of the requested resource from the authentication identity.

This solution however immediately introduced a new terminology. I had to come to the realization
that being authenticated and authorized is not the same. An application might be authenticated and
yet not authorized for a given operation at the same time. This required an implementation of
authorization, which introduced another question: where should the authorization logic be placed?
I have decided to place it inside the service as its “business logic” might change independently from
service to service, furthermore it should operate independently from the authentication.

Another learning was obtained from the user tests. As it turned out from the first tests, setting up
the application not was straight-forward enough, as it required to install PostgreSQL server and to
create a database with a specific name. The overcome this issue and simplify the setup process, I
have implemented automatic database creation, which means that whenever Stash Backend
successfully connects to a PostgreSQL server, it will look for a Stash database and automatically
create it if necessary.

 Page 36 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

6. Reflection

In this final chapter I will write about the possible improvements that could be done and also touch
on the future perspectives of the project. At the end I will conclude the report and the project by
formulating an evaluation and a final conclusion.

6.1 Improvements
Even though the initial goal has been successfully reached which was to develop a working
prototype of Stash Backend, there are several possible improvements that can be done in order to
improve the functioning of the application and to enhance the quality of the code.

1. One of the most eye-catcher possible improvements from my point of view is the separated
authenticators, which could be easily merged. Instead of maintaining 3 separate
authenticators using the same JWT technology but different business logic could be easily
merged into one module containing submodules. This would increase the maintainability of
the code and potentially remove code duplicates.

2. The second most obvious issue is the lack of cache-control. Due to the limitation of the
project’s time constraint, I have considered it not being essential from the perspective of
functionality. In the future however, it might be a good task to handle for the StashResponse
module.

3. Instead of producing only JSON type responses, the client could request a specific type of file
format in the request header, such as XML. This feature would increase the application’s
flexibility.

4. To apply an extended HATEOAS (Hypermedia As The Engine Of Application State) [6.1.a]
principle, hypermedia links could be provided in the response messages, providing guidance
for the client about how it can communicate with the server.

5. The Document service offers an endpoint for performing a filtered search on our JSON
documents. However this endpoint is rather limited, as it only offers two key-value pairs to
be provided. This could be extended by using some kind of descriptive query language
(similarly to OData [6.1.c]) which would then be passed as one single argument.

6. To improve on convenience CORS settings could be added to the configuration file. In the
current iteration of the application all requests coming from any domains are allowed. A
property in the configuration file could be added accepting a list of domains from which
requests would be accepted exclusively.

 Page 37 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

6.2 Future perspectives
The first functioning prototype has been released, which is ready to be used locally, however there
is still room for expanding the project, and not just on a technical level.

One of the future perspectives of the project I always had in mind was to deploy the software
remotely on a server making the application a real Backend-as-a-Service. In this case the users
would not need to install and configure the application and its dependencies manually on their
machines, but instead they could simply register a Stash Cloud account, which then would provide
them a bunch of endpoints; ready to be used from anywhere.

Even with Stash Cloud, Stash Backend would of course remain open-source. This would lead to a
business model that is practiced by several successful companies such as GitLab [6.2.a] or JetBrains
[6.2.b]; a business model that offers a community-lead open-source project and a premium service
based on a subscription model.

Another future perspective could be to introduce sample backends for certain types of client
applications; templates that contains a preconfigured backend for chat apps, note taking apps,
social apps etc. This way when creating a new app the user could decide whether he/she wants to
create a blank backend or wants to use a template. If implemented right, this would of course
increase the convenience of the application even more.

6.3 Evaluation and final remarks
The final version of the Stash Backend at the time this report is being written is versioned v0.1.4
and is available on GitHub. This iteration fulfills all the functional and non-functional requirements
specified formerly.

I consider the project successful, as the user tests proved the application to be continuously
improving and at the end, my target users could easily utilize the features Stash Backend offers. The
tests covered everything from downloading the application to interpreting the documentation and
developing the user’s own front end applications using Stash Backend services. Through the
implementation I managed to obtain a comprehensive overview of REST of which principles I could
apply in the implementation of the application alongside with a set of OOP and MVC constraints.
REST is a topic with a significant volume of which details could not have been covered in this
documentation entirely; I consider this deficit to be due to the limitation of the time and report
constraints.

I hope you found this paper interesting and informative and enjoyed trying out the application. As
for me, I am satisfied with the results of the project and I am looking forward to keep developing
Stash Backend.

 Page 38 of 41

Stash Backend: Bachelor Project in Web Development PBA December 2017

7. Appendices

7.1 Source code
The source code of the final product and the standalone application (versioned as v0.1.4) are
available for download on GitHub at the following links:

● Source code: https://github.com/gaboratorium/stash
● Standalone application: https://github.com/gaboratorium/stash/releases/tag/v0.1.4

7.2 Installation guide
1. Download the most recent release (standalone application) from GitHub
2. Download and install Java 8 6

3. Download and install PostgreSQL server. During installation, leave the default port 7

number (5432) and provide a password for your postgres user. If you were not prompted to
set these two, you might have to set them after installation manually.

4. Set up your credentials in the configuration file (config.yml). Make sure that the right port
number and password is set for the Postgres connection.

5. Navigate to the Stash Backend folder, open a terminal and run: “java -jar
stash-YOUR-VERSION-NUMBER-SNAPSHOT-all.jar server config.yml”

6. Visit http://localhost:8080.

7.3 User survey & user tests
[4.2.1.b] - I have conducted a user survey which contains the potential features of a BaaS. In this
survey I have asked a couple of developers to prioritize these features according to how important
they find them. The survey can be found in the attached file named Stash Backend - User
survey.pdf.

[2.6.2.b] - Throughout the implementation user tests have been made which have been
documented. The documented user tests can be found in the attached file named Stash Backend -
User tests.pdf.

6 Java 8: http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html - Retrieved 11
December 2017
7 PostgreSQL downloads: https://www.postgresql.org/download/ - Retrieved 11 December 2017

 Page 39 of 41

https://github.com/gaboratorium/stash
https://github.com/gaboratorium/stash/releases/tag/v0.1.4
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://www.postgresql.org/download/

Stash Backend: Bachelor Project in Web Development PBA December 2017

7.4 Literature
1. Leonard Richardson, Mike Amundsen and Sam Ruby: RESTful Web APIs (2013), ISBN13:

9781449358068
2. Todd Fredrich: RESTful Service Best Practices: Recommendations for Creating Web Services,

https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Pra
ctices-v1_2.pdf

3. Roy Fielding: Architectural Styles and the Design of Network-based Software Architectures -
Representational State Transfer,
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

7.5 References
̼ [2.2.a] Google Fit REST API - https://developers.google.com/fit/rest/ - (Accessed on 10.11.2017)
̼ [2.2.b] Live SDK REST API - https://msdn.microsoft.com/en-us/library/office/dn631844.aspx - (Accessed

on 10.11.2017)
̼ [2.2.c] Apple News API -

https://developer.apple.com/library/content/documentation/General/Conceptual/News_API_Ref/index.
html (Accessed on 10.11.2017)

̼ [2.6.1.a] Git - https://git-scm.com/ (Accessed on 16.11.2017)
̼ [2.6.1.b] GitHub - https://github.com/ (Accessed on 16.11.2017)
̼ [2.6.2.a] Agile Software Development: http://www.agile-process.org/ - (Accessed on 17.11.2017)
̼ [2.6.2.c] GitHub Issues: https://guides.github.com/features/issues/ - (Accessed on 17.11.2017)
̼ [2.6.2.d] Google Drive: https://www.google.com/drive/ - (Accessed on 17.11.2017)
̼ [3.1.a]: Web Services Architecture § Relationship to the World Wide Web and REST Architectures -

https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest (Accessed on 17.11.2017)
̼ [3.1.2.a] Facebook Login: https://developers.facebook.com/docs/facebook-login/ -

(Accessed on 18.11.2017)
̼ [3.1.3.a] Web Services Architecture § Relationship to the World Wide Web and REST Architectures:

https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest - (Accessed on 17.11.2017)
̼ [3.1.3.b] OASIS Web Services Security:

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss -
(Accessed on 17.11.2017)

̼ [3.1.3.c] OASIS Web Services Reliable Messaging:
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm - (Accessed on 17.11.2017)

̼ [3.1.3.d] PayPal SOAP API: https://developer.paypal.com/docs/classic/api/PayPalSOAPAPIArchitecture/
- (Accessed on 17.11.2017)

̼ [3.1.3.e] Salesforce SOAP API:
https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_quickstart_intro.htm -
(Accessed on 17.11.2017)

̼ [3.2.a] Cloud Computing Accessibility:
https://www.w3.org/WAI/RD/wiki/Cloud_Computing_Accessibility -
(Accessed on 17.11.2017)

̼ [3.2.b] Amazon Web Services: https://aws.amazon.com/ - (Accessed on 17.11.2017)
̼ [3.2.c] Heroku: https://www.heroku.com/ - (Accessed on 17.11.2017)
̼ [3.2.d] Firebase: https://firebase.google.com/ - (Accessed on 17.11.2017)

 Page 40 of 41

https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_2.pdf
https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_2.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://developers.google.com/fit/rest/
https://msdn.microsoft.com/en-us/library/office/dn631844.aspx
https://developer.apple.com/library/content/documentation/General/Conceptual/News_API_Ref/index.html
https://developer.apple.com/library/content/documentation/General/Conceptual/News_API_Ref/index.html
https://git-scm.com/
https://github.com/
http://www.agile-process.org/
https://guides.github.com/features/issues/
https://www.google.com/drive/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://developers.facebook.com/docs/facebook-login/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
https://developer.paypal.com/docs/classic/api/PayPalSOAPAPIArchitecture/
https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_quickstart_intro.htm
https://www.w3.org/WAI/RD/wiki/Cloud_Computing_Accessibility
https://aws.amazon.com/
https://www.heroku.com/
https://firebase.google.com/

Stash Backend: Bachelor Project in Web Development PBA December 2017

̼ [4.2.1.a] User stories: http://www.agilemodeling.com/artifacts/userStory.htm - (Accessed on
(18.11.2017)

̼ [4.2.2.a] Apache: https://httpd.apache.org/ - (Accessed on 18.11.2017)
̼ [4.2.2.b] phpMyAdmin: https://www.phpmyadmin.net/ - (Accessed on 18.11.2017)
̼ [4.3.3.a] Roy Fielding: Architectural Styles and the Design of Network-based Software Architectures -

Representational State Transfer,
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm - (Accessed on 18.11.2017)

̼ [4.4.a] Dropwizard: http://www.dropwizard.io - (Accessed on 19.11.2017)
̼ [4.4.b] Dropwizard Configuration: http://www.dropwizard.io/1.2.0/docs/manual/configuration.html -

(Accessed on 19.11.2017)
̼ [4.4.c] Dropwizard Views: http://www.dropwizard.io/1.2.0/docs/manual/views.html - (Accessed on

19.11.2017)
̼ [4.4.d] Gradle: https://gradle.org/ - (Accessed on 19.11.2017)
̼ [4.4.e] PostgreSQL: https://www.postgresql.org/ - (Accessed on 19.11.2017)
̼ [4.4.f] PostgreSQL JSON Functions and Operations:

https://www.postgresql.org/docs/current/static/functions-json.html - (Accessed on 19.11.2017)
̼ [4.4.g] Dropwizard JDBI: http://www.dropwizard.io/1.2.0/docs/manual/jdbi.html#man-jdbi - (Accessed

on 19.11.2017)
̼ [4.5.2.a] Jetty: https://www.eclipse.org/jetty/ - (Accessed on 23.11.2017)
̼ [4.5.2.b] Jersey: https://jersey.github.io/ - (Accessed on 23.11.2017)
̼ [4.5.2.c] Jackson: https://github.com/FasterXML/jackson - (Accessed on 23.11.2017)
̼ [4.5.3.a] Dropwizard JDBI: http://www.dropwizard.io/1.2.0/docs/manual/jdbi.html - (Accessed on

23.11.2017)
̼ [4.5.3.b] Liquibase: http://www.liquibase.org/ - (Accessed on 23.11.2017)
̼ [5.2.a] O’REILLY’s RESTful Web APIs: http://shop.oreilly.com/product/0636920028468.do
̼ [5.2.b] HTTP/1.1: Method Definitions: https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html -

(Accessed on 23.11.2017)
̼ [5.2.c] HTTP/1.1 Method Definitions: https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html -

(Accessed on 23.11.2017)
̼ [5.3.a] JWT: https://jwt.io/ - (Accessed on 24.11.2017)
̼ [5.4.a] Leonard Richardson, Mike Amundsen and Sam Ruby: RESTful Web APIs (2013), ISBN13:

9781449358068
̼ [5.5.a] Todd Fredrich: RESTful Service Best Practices: Recommendations for Creating Web Services,

https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_
2.pdf - (Accessed on 24.11.2017)

̼ [5.5.b] Mustache: https://mustache.github.io/ - (Accessed on 24.11.2017)
̼ [5.6.1.a] OWASP TOP 10 - 2017:

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf - (Accessed on
24.11.2017)

̼ [5.6.1.b] JDBI: Convenient SQL for Java: http://jdbi.org/jdbi2/ - (Accessed on 24.11.2017)
̼ [5.6.1.c] SQL Injection Prevention Cheat Sheet - OWASP:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet -(Accessed on 24.11.2017)

 Page 41 of 41

http://www.agilemodeling.com/artifacts/userStory.htm
https://httpd.apache.org/
https://www.phpmyadmin.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.dropwizard.io/
http://www.dropwizard.io/1.2.0/docs/manual/configuration.html
http://www.dropwizard.io/1.2.0/docs/manual/views.html
https://gradle.org/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/static/functions-json.html
http://www.dropwizard.io/1.2.0/docs/manual/jdbi.html#man-jdbi
https://www.eclipse.org/jetty/
https://jersey.github.io/
https://github.com/FasterXML/jackson
http://www.dropwizard.io/1.2.0/docs/manual/jdbi.html
http://www.liquibase.org/
http://shop.oreilly.com/product/0636920028468.do
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://jwt.io/
https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_2.pdf
https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_2.pdf
https://mustache.github.io/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
http://jdbi.org/jdbi2/
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

